ЛАБОРАТОРНАЯ РАБОТА № 10 МОДЕЛИРОВАНИЕ РАДИОАКТИВНОГО РАСПАДА

Цель работы: на модели экспериментально проверить закон радиоактивного распада.

Оборудование: 128 монет, банка, разнос.

Вопросы к зачету:

- 1. Что называют радиоактивностью?
- 2. Каковы свойства и природа α- излучения, β- излучения, γ- излучения?
- 3. Может ли радиоактивный элемент одновременно излучать α -, и β -лучи? В каких случаях излучаются γ лучи?
- 4. Сформулируйте и запишите правила смещения для α- распада.
- 5. Сформулируйте и запишите правила смещения для β- распада.
- 6. Какие элементарные частицы испускаются при α -, и β распадах?
- 7. Какие из известных вам законов сохранения выполняются при радиоактивных превращениях?
- 8. Что называют периодом полураспада радиоактивного вещества? Что он характеризует?
- 9. Приведите примеры периодов полураспада некоторых радиоактивных элементов.
- 10. Как выглядит график зависимости спада активности радиоактивного элемента от времени.
- 11. Выедите формулу закона радиоактивного распада.

Ход работы:

За время T каждое из радиоактивных ядер распадается с вероятностью $\frac{1}{2}$. Процесс радиоактивного распада можно промоделировать подбрасыванием монет, при котором с той же вероятностью $\frac{1}{2}$ выпадают или «орел» или «решка». Предположим, что если выпадет «орел» - ядро уцелело, если «решка» - распалось. Каждое бросание монет соответствует для ядра протеканию промежутка времени, равного периоду полураспада.

- 1. Отсчитайте начальное количество монет $N_0 = 128$, перемешайте их в банке и высыпьте на разнос.
- 2.Подсчитайте число «нераспавшихся» монет (то есть число монет, лежащих «орлом» вверх), соберите их обратно в банку, снова перемешайте и высыпьте на разнос.
- 3.Опыт повторите 10 раз.
- 2.Заполните таблицу

Серия 1

Количество бросаний,	Количество	Количество	o op and a
t	«нераспавшихся»	«распавшихся»	монет,
$n = \frac{\iota}{T}$	монет, N	$N^I = N_0 - N$	
0	128	0	
1			
2			
3			
4			
5			
6			
7			
8			_
9			
10			_

5. Повторите серию бросаний монет еще дважды, начиная каждый раз с $N_0 = 128$.

Серия 2

				Ссрия 2
Количество	бросаний,	Количество	Количество	
t		«нераспавшихся»	«распавшихся»	монет,
$n = \frac{t}{T}$		монет, N	$N^I = N_0 - N$	
0		128	0	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Серия 3

Серии 5	IC .	TC -
Количество бросаний, $n = \frac{t}{T}$	Количество	Количество
	«нераспавшихся»	«распавшихся» монет,
	MOHET, N	$N^I = N_0 - N$
0	128	0
1		
2		
3		

4	
5	
6	
7	
8	
9	
10	

7. Подобрав удобный масштаб, постройте график зависимости соответствующей формуле $N(n) = \frac{N_0}{2^n}$. На той же координатной плоскости начертите графики каждой серии эксперимента. Удобнее чертить графики для разных серий разными цветами.

/. Сделайте вывод:		
Начисленные баллы		
Полнись преполавателя		